
AJAX Tutorial
AJAX is a web development technique for creating interactive web applications. If
you know JavaScript, HTML, CSS, and XML, then you need to spend just one hour
to start with AJAX.

Why to Learn Ajax?
AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for
creating better, faster, and more interactive web applications with the help of XML,
HTML, CSS, and Java Script.

 Ajax uses XHTML for content, CSS for presentation, along with Document
Object Model and JavaScript for dynamic content display.

 Conventional web applications transmit information to and from the sever
using synchronous requests. It means you fill out a form, hit submit, and get
directed to a new page with new information from the server.

 With AJAX, when you hit submit, JavaScript will make a request to the server,
interpret the results, and update the current screen. In the purest sense, the
user would never know that anything was even transmitted to the server.

 XML is commonly used as the format for receiving server data, although any
format, including plain text, can be used.

 AJAX is a web browser technology independent of web server software.

 A user can continue to use the application while the client program requests
information from the server in the background.

 Intuitive and natural user interaction. Clicking is not required, mouse
movement is a sufficient event trigger.

 Data-driven as opposed to page-driven.

Rich Internet Application Technology
AJAX is the most viable Rich Internet Application (RIA) technology so far. It is
getting tremendous industry momentum and several tool kit and frameworks are
emerging. But at the same time, AJAX has browser incompatibility and it is
supported by JavaScript, which is hard to maintain and debug.

AJAX is Based on Open Standards
AJAX is based on the following open standards −

 Browser-based presentation using HTML and Cascading Style Sheets (CSS).
 Data is stored in XML format and fetched from the server.
 Behind-the-scenes data fetches using XMLHttpRequest objects in the browser.
 JavaScript to make everything happen.

Understanding Synchronous vs Asynchronous
Before understanding AJAX, let’s understand classic web application model and ajax
web application model first.

Synchronous (Classic Web-Application Model)
A synchronous request blocks the client until operation completes i.e. browser is
unresponsive. In such case, javascript engine of the browser is blocked.

As you can see in the above image, full page is refreshed at request time and user is
blocked until request completes.

Let's understand it another way.

15.8M

325

Java Try Catch

Asynchronous (AJAX Web-Application Model)
An asynchronous request doesn’t block the client i.e. browser is responsive. At that
time, user can perform another operations also. In such case, javascript engine of
the browser is not blocked.

As you can see in the above image, full page is not refreshed at request time and
user gets response from the ajax engine.

Let's try to understand asynchronous communication by the image given below.

AJAX Technologies
As describe earlier, ajax is not a technology but group of inter-related
technologies. AJAX technologies includes:

o HTML/XHTML and CSS

o DOM (Document Object Model)

o XML or JSON

o XMLHttpRequest

o JavaScript

HTML/XHTML and CSS
These technologies are used for displaying content and style. It is mainly used for
presentation.

DOM
It is used for dynamic display and interaction with data.

XML or JSON
For carrying data to and from server. JSON (Javascript Object Notation) is like XML
but short and faster than XML.Next

Sta

XMLHttpRequest
For asynchronous communication between client and server.

JavaScript
It is used to bring above technologies together.

Independently, it is used mainly for client-side validation.

Understanding XMLHttpRequest

https://www.javatpoint.com/ajax-tutorial
https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/xhtml-tutorial
https://www.javatpoint.com/css-tutorial
https://www.javatpoint.com/xml-tutorial
https://www.javatpoint.com/json-tutorial
https://www.javatpoint.com/understanding-xmlhttprequest
https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/understanding-synchronous-vs-asynchronous

An object of XMLHttpRequest is used for asynchronous communication between
client and server.

It performs following operations:

1. Sends data from the client in the background

2. Receives the data from the server

3. Updates the webpage without reloading it.

Properties of XMLHttpRequest object
The common properties of XMLHttpRequest object are as follows:

Property Description

onReadyStateChang
e

It is called whenever readystate attribute changes. It must not be
used with synchronous requests.

readyState represents the state of the request. It ranges from 0 to 4.

0 UNOPENED open() is not called.

1 OPENED open is called but send() is not called.

2 HEADERS_RECEIVED send() is called, and headers and
status are available.

3 LOADING Downloading data; responseText holds the
data.

4 DONE The operation is completed fully.

reponseText returns response as text.

responseXML returns response as XML

Methods of XMLHttpRequest object
The important methods of XMLHttpRequest object are as follows:

20.9M

401

Method Description

void open(method, URL) opens the request specifying get or post
method and url.

void open(method, URL, async) same as above but specifies asynchronous
or not.

void open(method, URL, async,
username, password)

same as above but specifies username and
password.

void send() sends get request.

void send(string) send post request.

setRequestHeader(header,value) it adds request headers.

How AJAX works?
AJAX communicates with the server using XMLHttpRequest object. Let's try to
understand the flow of ajax or how ajax works by the image displayed below.

As you can see in the above example, XMLHttpRequest object plays a important
role.

1. User sends a request from the UI and a javascript call goes to
XMLHttpRequest object.

2. HTTP Request is sent to the server by XMLHttpRequest object.

3. Server interacts with the database using JSP, PHP, Servlet, ASP.net etc.

4. Data is retrieved.

5. Server sends XML data or JSON data to the XMLHttpRequest callback
function.

6. HTML and CSS data is displayed on the browser.

JavaScript Trends in 2021

2022 is just around the corner, as unbelievable as that sounds.

If you’re curious about what the future of the programming

world might be, you’re in the right place. We tried to analyze

trends in 2022 and want to share some insights into key

directions for the JavaScript ecosystem.

Read on to find out!

JavaScript Language Keeps Going Strong

For years in a row, JavaScript is the most sought-after and fast-

growing programming language. It remains one of the smartest

choices when it comes to the development of interactive web

interfaces since it’s supported by all modern browsers.

As the annual survey held by Stack Overflow shows, about 70

percent of 72.525 professional developers stated they use

JavaScript. Moreover, it’s one of the most wanted languages

meaning that 17.8% of respondents have not yet used it but

want to learn it.

https://insights.stackoverflow.com/survey/2019/#technology

According to the data provided by stackshare.io, over 10400

companies worldwide use JavaScript in their stacks. The

language is the heart of any big tech company, such as PayPal

(likewise, the online payment giant was one of the earliest

adopters of NodeJS), Netflix, Groupon, Walmart, and LinkedIn.

After all, 16 from 25 US unicorn companies (the top privately-

held startups valued at over $1 billion) mention JavaScript in

their technology stacks. It’s therefore unlikely that JavaScript

goes off the grid in the near future.

https://www.stackshare.io/javascript
https://www.codingdojo.com/blog/unicorn-languages-report

JavaScript Best Practices

Avoid Global Variables

Minimize the use of global variables.

This includes all data types, objects, and functions.

Global variables and functions can be overwritten by other scripts.

Use local variables instead

Always Declare Local Variables

All variables used in a function should be declared as local variables.

Local variables must be declared with the var keyword or the let keyword,

otherwise they will become global variables.

Declarations on Top

It is a good coding practice to put all declarations at the top of each script or
function.

This will:

• Give cleaner code

• Provide a single place to look for local variables
• Make it easier to avoid unwanted (implied) global variables

• Reduce the possibility of unwanted re-declarations

// Declare at the beginning
let firstName, lastName, price, discount, fullPrice;

// Use later
firstName = "John";
lastName = "Doe";

price = 19.90;
discount = 0.10;

fullPrice = price - discount;

This also goes for loop variables:

for (let i = 0; i< 5; i++) {

Initialize Variables

It is a good coding practice to initialize variables when you declare them.

This will:

• Give cleaner code
• Provide a single place to initialize variables

• Avoid undefined values

// Declare and initiate at the beginning
let firstName = "",
let lastName = "",
let price = 0,
let discount = 0,
let fullPrice = 0,
const myArray = [],
const myObject = {};

Initializing variables provides an idea of the intended use (and intended data

type).

Declare Objects with const

Declaring objects with const will prevent any accidential change of type:

Example

let car = {type:"Fiat", model:"500", color:"white"};
car = "Fiat"; // Changes object to string

const car = {type:"Fiat", model:"500", color:"white"};
car = "Fiat"; // Not possible

Declare Arrays with const

Declaring arrays with const will prevent any accidential change of type:

Example

let cars = ["Saab", "Volvo", "BMW"];
cars = 3; // Changes array to number

const cars = ["Saab", "Volvo", "BMW"];
cars = 3; // Not possible

Don't Use new Object()

• Use "" instead of new String()
• Use 0 instead of new Number()
• Use false instead of new Boolean()
• Use {} instead of new Object()
• Use [] instead of new Array()
• Use /()/ instead of new RegExp()
• Use function (){} instead of new Function()

Example

let x1 = ""; // new primitive string
let x2 = 0; // new primitive number
let x3 = false; // new primitive boolean
const x4 = {}; // new object
const x5 = []; // new array object
const x6 = /()/; // new regexp object
const x7 = function(){}; // new function object

Beware of Automatic Type Conversions

JavaScript is loosely typed.

A variable can contain all data types.

A variable can change its data type:

Example

let x = "Hello"; // typeof x is a string
x = 5; // changes typeof x to a number

Try it Yourself »

Beware that numbers can accidentally be converted to strings or NaN (Not a

Number).

When doing mathematical operations, JavaScript can convert numbers to
strings:

Example

let x = 5 + 7; // x.valueOf() is 12, typeof x is a number
let x = 5 + "7"; // x.valueOf() is 57, typeof x is a string
let x = "5" + 7; // x.valueOf() is 57, typeof x is a string
let x = 5 - 7; // x.valueOf() is -2, typeof x is a number
let x = 5 - "7"; // x.valueOf() is -2, typeof x is a number
let x = "5" - 7; // x.valueOf() is -2, typeof x is a number
let x = 5 - "x"; // x.valueOf() is NaN, typeof x is a number

Try it Yourself »

Subtracting a string from a string, does not generate an error but
returns NaN (Not a Number):

Example

"Hello" - "Dolly" // returns NaN

Try it Yourself »

Use === Comparison

The == comparison operator always converts (to matching types) before

comparison.

The === operator forces comparison of values and type:

https://www.w3schools.com/js/tryit.asp?filename=tryjs_best_typeof
https://www.w3schools.com/js/tryit.asp?filename=tryjs_best_valueof
https://www.w3schools.com/js/tryit.asp?filename=tryjs_best_string_op1

Example

0 == ""; // true
1 == "1"; // true
1 == true; // true

0 === ""; // false
1 === "1"; // false
1 === true; // false

Try it Yourself »

Use Parameter Defaults

If a function is called with a missing argument, the value of the missing
argument is set to undefined.

Undefined values can break your code. It is a good habit to assign default

values to arguments.

Example

function myFunction(x, y) {
 if (y === undefined) {
 y = 0;
 }
}

Try it Yourself »

End Your Switches with Defaults

Always end your switch statements with a default. Even if you think there is

no need for it.

Example

switch (new Date().getDay()) {
 case 0:
 day = "Sunday";
 break;
 case 1:
 day = "Monday";
 break;
 case 2:

https://www.w3schools.com/js/tryit.asp?filename=tryjs_best_comparison
https://www.w3schools.com/js/tryit.asp?filename=tryjs_best_parameter_default

 day = "Tuesday";
 break;
 case 3:
 day = "Wednesday";
 break;
 case 4:
 day = "Thursday";
 break;
 case 5:
 day = "Friday";
 break;
 case 6:
 day = "Saturday";
 break;
 default:
 day = "Unknown";
}

Try it Yourself »

Avoid Number, String, and Boolean as

Objects

Always treat numbers, strings, or booleans as primitive values. Not as
objects.

Declaring these types as objects, slows down execution speed, and produces

nasty side effects:

Example

let x = "John";
let y = new String("John");
(x === y) // is false because x is a string and y is an object.

Try it Yourself »

Or even worse:

Example

let x = new String("John");
let y = new String("John");
(x == y) // is false because you cannot compare objects.

https://www.w3schools.com/js/tryit.asp?filename=tryjs_break_switch
https://www.w3schools.com/js/tryit.asp?filename=tryjs_best_object_string1

JavaScript Common

Mistakes(Quality code)

Accidentally Using the Assignment

Operator

JavaScript programs may generate unexpected results if a programmer
accidentally uses an assignment operator (=), instead of a comparison

operator (==) in an if statement.

This if statement returns false (as expected) because x is not equal to 10:

let x = 0;

if (x == 10)

Try it Yourself »

This if statement returns true (maybe not as expected), because 10 is true:

let x = 0;

if (x = 10)

Try it Yourself »

This if statement returns false (maybe not as expected), because 0 is false:

let x = 0;

if (x = 0)

Try it Yourself »

An assignment always returns the value of the assignment.

Expecting Loose Comparison

In regular comparison, data type does not matter. This if statement returns

true:

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_equal_1
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_equal_2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_equal_3

let x = 10;

let y = "10";

if (x == y)

Try it Yourself »

In strict comparison, data type does matter. This if statement returns false:

let x = 10;

let y = "10";

if (x === y)

Try it Yourself »

It is a common mistake to forget that switch statements use strict

comparison:

This case switch will display an alert:

let x = 10;

switch(x) {

 case 10: alert("Hello");

}

Try it Yourself »

This case switch will not display an alert:

let x = 10;

switch(x) {

 case "10": alert("Hello");

}

Try it Yourself »

Confusing Addition & Concatenation

Addition is about adding numbers.

Concatenation is about adding strings.

In JavaScript both operations use the same + operator.

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_loose_1
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_loose_2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_loose_3
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_loose_4

Because of this, adding a number as a number will produce a different result
from adding a number as a string:

let x = 10;

x = 10 + 5; // Now x is 15

let y = 10;

y += "5"; // Now y is "105"

Try it Yourself »

When adding two variables, it can be difficult to anticipate the result:

let x = 10;

let y = 5;

let z = x + y; // Now z is 15

let x = 10;

let y = "5";

let z = x + y; // Now z is "105"

Try it Yourself »

Misunderstanding Floats

All numbers in JavaScript are stored as 64-bits Floating point
numbers (Floats).

All programming languages, including JavaScript, have difficulties with

precise floating point values:

let x = 0.1;

let y = 0.2;

let z = x + y // the result in z will not be 0.3

Try it Yourself »

To solve the problem above, it helps to multiply and divide:

Example

let z = (x * 10 + y * 10) / 10; // z will be 0.3

Try it Yourself »

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_add_1
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_add_2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_floats
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_floats_ok

Breaking a JavaScript String

JavaScript will allow you to break a statement into two lines:

Example 1

let x =

"Hello World!";

Try it Yourself »

But, breaking a statement in the middle of a string will not work:

Example 2

let x = "Hello

World!";

Try it Yourself »

You must use a "backslash" if you must break a statement in a string:

Example 3

let x = "Hello \

World!";

Try it Yourself »

Misplacing Semicolon

Because of a misplaced semicolon, this code block will execute regardless of
the value of x:

if (x == 19);

{

 // code block

}

Try it Yourself »

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_string_1
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_string_2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_string_3
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_semicolon

Breaking a Return Statement

It is a default JavaScript behavior to close a statement automatically at the
end of a line.

Because of this, these two examples will return the same result:

Example 1

function myFunction(a) {

 let power = 10

 return a * power

}

Try it Yourself »

Example 2

function myFunction(a) {

 let power = 10;

 return a * power;

}

Try it Yourself »

JavaScript will also allow you to break a statement into two lines.

Because of this, example 3 will also return the same result:

Example 3

function myFunction(a) {

 let

 power = 10;

 return a * power;

}

Try it Yourself »

But, what will happen if you break the return statement in two lines like this:

Example 4

function myFunction(a) {

 let

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_return_1
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_return_2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_return_3

 power = 10;

 return

 a * power;

}

Try it Yourself »

The function will return undefined!

Why? Because JavaScript thought you meant:

Example 5

function myFunction(a) {

 let

 power = 10;

 return;

 a * power;

}

Try it Yourself »

Explanation

If a statement is incomplete like:

let

JavaScript will try to complete the statement by reading the next line:

power = 10;

But since this statement is complete:

return

JavaScript will automatically close it like this:

return;

This happens because closing (ending) statements with semicolon is optional
in JavaScript.

JavaScript will close the return statement at the end of the line, because it is

a complete statement.

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_return_4
https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_return_5

Never break a return statement.

Accessing Arrays with Named Indexes

Many programming languages support arrays with named indexes.

Arrays with named indexes are called associative arrays (or hashes).

JavaScript does not support arrays with named indexes.

In JavaScript, arrays use numbered indexes:

Example

const person = [];

person[0] = "John";

person[1] = "Doe";

person[2] = 46;

person.length; // person.length will return 3

person[0]; // person[0] will return "John"

Try it Yourself »

In JavaScript, objects use named indexes.

If you use a named index, when accessing an array, JavaScript will redefine

the array to a standard object.

After the automatic redefinition, array methods and properties will produce

undefined or incorrect results:

Example:

const person = [];

person["firstName"] = "John";

person["lastName"] = "Doe";

person["age"] = 46;

person.length; // person.length will return 0

person[0]; // person[0] will return undefined

Try it Yourself »

https://www.w3schools.com/js/tryit.asp?filename=tryjs_array_associative_1
https://www.w3schools.com/js/tryit.asp?filename=tryjs_array_associative_2

Ending Definitions with a Comma

Trailing commas in object and array definition are legal in ECMAScript 5.

Object Example:

person = {firstName:"John", lastName:"Doe", age:46,}

Array Example:

points = [40, 100, 1, 5, 25, 10,];

Undefined is Not Null

JavaScript objects, variables, properties, and methods can be undefined.

In addition, empty JavaScript objects can have the value null.

This can make it a little bit difficult to test if an object is empty.

You can test if an object exists by testing if the type is undefined:

Example:

if (typeof myObj === "undefined")

Try it Yourself »

But you cannot test if an object is null, because this will throw an error if the

object is undefined:

Incorrect:

if (myObj === null)

To solve this problem, you must test if an object is not null, and

not undefined.

But this can still throw an error:

Incorrect:

if (myObj !== null && typeof myObj !== "undefined")

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_object_undefined

Because of this, you must test for not undefined before you can test for

not null:

Correct:

if (typeof myObj !== "undefined" &&myObj !== null)

Try it Yourself »

https://www.w3schools.com/js/tryit.asp?filename=tryjs_mistakes_object_null

JavaScript Form

In this tutorial, we will learn, discuss, and understand the JavaScript form. We will also
see the implementation of the JavaScript form for different purposes.

Here, we will learn the method to access the form, getting elements as the JavaScript
form's value, and submitting the form.

Introduction to Forms

Forms are the basics of HTML

. We use HTML form element in order to create the JavaScript form.

For creating a form, we can use the following sample code:

1. <html>
2. <head>
3. <title> Login Form</title>
4. </head>
5. <body>
6. <h3> LOGIN </h3>
7. <form name="Login_form" onsubmit="submit_form()">
8. <h4> USERNAME</h4>
9. <input type="text" placeholder="Enter your email id"/>
10. <h4> PASSWORD</h4>
11. <input type="password" placeholder="Enter your password"/></br></br>
12. <input type="submit" value="Login"/>
13. <input type="button" value="SignUp" onClick="create()"/>
14. </form>
15. </html>

In the code:

10 Sec

o Form name tag is used to define the name of the form. The name of the form here
is "Login_form". This name will be referenced in the JavaScript form.

o The action tag defines the action, and the browser will take to tackle the form
when it is submitted. Here, we have taken no action.

o The method to take action can be either post or get, which is used when the form
is to be submitted to the server. Both types of methods have their own properties
and rules.

o The input type tag defines the type of inputs we want to create in our form. Here,
we have used input type as 'text', which means we will input values as text in the
textbox.

o Net, we have taken input type as 'password' and the input value will be password.

https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/html-form
https://www.javatpoint.com/javascript-tutorial

o Next, we have taken input type as 'button' where on clicking, we get the value of
the form and get displayed.

Other than action and methods, there are the following useful methods also which are
provided by the HTML Form Element

o submit (): The method is used to submit the form.

o reset (): The method is used to reset the form values.

Referencing forms

Now, we have created the form element using HTML, but we also need to make its
connectivity to JavaScript. For this, we use the getElementById () method that references
the html form element to the JavaScript code.

The syntax of using the getElementById() method

is as follows:

1. let form = document.getElementById('subscribe');

Using the Id, we can make the reference.

Submitting the form

Next, we need to submit the form by submitting its value, for which we use
the onSubmit() method. Generally, to submit, we use a submit button that submits the
value entered in the form.

The syntax of the submit() method is as follows:

1. <input type="submit" value="Subscribe">

When we submit the form, the action is taken just before the request is sent to the server.
It allows us to add an event listener that enables us to place various validations on the
form. Finally, the form gets ready with a combination of HTML and JavaScript code.

Let's collect and use all these to create a Login form

and SignUp form and use both.

Login Form

1. <html>
2. <head>
3. <title> Login Form</title>
4. </head>
5. <body>

https://www.javatpoint.com/document-getElementById()-method
https://www.javatpoint.com/document-getElementById()-method
https://www.javatpoint.com/document-getElementById()-method
https://www.javatpoint.com/document-getElementById()-method
https://www.javatpoint.com/html-login-form
https://www.javatpoint.com/html-login-form
https://www.javatpoint.com/html-login-form

6. <h3> LOGIN </h3>
7. <form name="Login_form" onsubmit="submit_form()">
8. <h4> USERNAME</h4>
9. <input type="text" placeholder="Enter your email id"/>
10. <h4> PASSWORD</h4>
11. <input type="password" placeholder="Enter your password"/></br></br>
12. <input type="submit" value="Login"/>
13. <input type="button" value="SignUp" onClick="create()"/>
14. </form>
15. <script type="text/javascript">
16. function submit_form(){
17. alert("Login successfully");
18. }
19. function create(){
20. window.location="signup.html";
21. }
22. </script>
23. </body>
24. </html>

The output of the above code on clicking on Login button is shown below:

SignUp Form

1. <html>
2. <head>
3. <title> SignUp Page</title>
4. </head>
5. <body align="center" >
6. <h1> CREATE YOUR ACCOUNT</h1>

7. <table cellspacing="2" align="center" cellpadding="8" border="0">
8. <tr><td> Name</td>
9. <td><input type="text" placeholder="Enter your name" id="n1"></td></tr>
10. <tr><td>Email </td>
11. <td><input type="text" placeholder="Enter your email id" id="e1"></td></tr>
12. <tr><td> Set Password</td>
13. <td><input type="password" placeholder="Set a password" id="p1"></td></tr>
14. <tr><td>Confirm Password</td>
15. <td><input type="password" placeholder="Confirm your password" id="p2"></td>

</tr>
16. <tr><td>
17. <input type="submit" value="Create" onClick="create_account()"/>
18. </table>
19. <script type="text/javascript">
20. function create_account(){
21. var n=document.getElementById("n1").value;
22. var e=document.getElementById("e1").value;
23. var p=document.getElementById("p1").value;
24. var cp=document.getElementById("p2").value;
25. //Code for password validation
26. var letters = /^[A-Za-z]+$/;
27. var email_val = /^([a-zA-Z0-9_\.\-])+\@(([a-zA-Z0-9\-])+\.)+([a-zA-Z0-

9]{2,4})+$/;
28. //other validations required code
29. if(n==''||e==''||p==''||cp==''){
30. alert("Enter each details correctly");
31. }
32. else if(!letters.test(n))
33. {
34. alert('Name is incorrect must contain alphabets only');
35. }
36. else if (!email_val.test(e))
37. {
38. alert('Invalid email format please enter valid email id');
39. }
40. else if(p!=cp)
41. {
42. alert("Passwords not matching");
43. }
44. else if(document.getElementById("p1").value.length > 12)
45. {
46. alert("Password maximum length is 12");
47. }
48. else if(document.getElementById("p1").value.length < 6)
49. {
50. alert("Password minimum length is 6");
51. }
52. else{

53. alert("Your account has been created successfully... Redirecting to JavaTpoint.co
m");

54. window.location="https://www.Facebook.com/";
55. }
56. }
57. </script>
58. </body>
59. </html>

The output of the above code is shown below:

In this way, we can create forms in JavaScript with proper validations.

JavaScript Browser Object Model
JavaScript provides WebAPIs and Interfaces(object types) that we can
use while developing web application or website. These APIs and
objects help us in controlling the lifecycle of the webpage and
performing various actions like getting browser information, managing
screen size, opening and closing new browser window, getting URL
information or updating URL, getting cookies and local storage, etc.

The Iterfaces (object types) which help us interact with the browser
window are known as Browser objects. Browser object is not an
official term but its a group of objects which belongs to different
WebAPIs but are used for managing various browser related
information and actions.

For example, when an HTML document is opened in a browser
window, the browser interprets the document as a collection of
hierarchical objects(HTML tags) and accordingly displays the data
contained in these objects(HTML page rendering). The browser parses
the document and creates a collection of objects, which defines the
documents and its details. We have shown the various objects that can
be used to access various components of the browser window in the
picture below:

The browser objects are of various types, used for interacting with the
browser and belongs to different APIs. The collection of these Browser
objects is also known as Browser object Model(BOM).

The default object of browser is Window which means you can call its
functions directly.

Browser Objects:

The objects listed below are called browser objects.

● Window - part of DOM API
● Navigator

● Document - part of DOM API
● Screen - property of Window object
● History - property of Window object
● Location - property of Window and Document object

Window Object

It is used to interact with the browser window which displays the web
page. It generally represents a tab in browser, but some actions like
window width and height will affect the complete browser window.

We have covered JavaScript Window Object separately, in detail.

Navigator Object

It acts as a storehouse of all the data and information about the
Browser software used to access the webpage and this object is used
to fetch information related to the browser for example, whether the
user is using Chrome browser or Safari browser, which version of
browser is being used etc.

We have covered JavaScript Navigator Object separately, in detail.

Document Object

This object represent the HTML document that is loaded into the
browser. A document object is an object that provides access to all
HTML elements of a document(webpage). We can use this object to
append a new HTML tag to the webpage, modify any existing HTML
tag, etc.

We have covered JavaScript Document Object separately, in detail.

History Object

It stores Uniform Resource Locator(URLs) visited by a user in the
browser. It is a built-in object which is used to get browser history.
This object is a property of the JavaScript Window object.

We have covered JavaScript History Object separately, in detail.

Screen Object

It is a built-in object which is used to fetch information related to the
browser screen, like the screen size, etc. It is also obtained from the
Window object.

We have covered JavaScript Screen Object separately, in detail.

Location Object

Location is a built-in object which represent the location of the object
to which it is linked, which can be Window or Document. Both the
Document and Window interface have a linked location property.

JavaScript - Multimedia

The JavaScript navigator object includes a child object called plugins. This object
is an array, with one entry for each plug-in installed on the browser. The
navigator.plugins object is supported only by Netscape, Firefox, and Mozilla only.

Example

Here is an example that shows how to list down all the plug-on installed in your
browser −

<html>

<head>

<title>List of Plug-Ins</title>

</head>

<body>

<tableborder="1">

<tr>

<th>Plug-in Name</th>

<th>Filename</th>

<th>Description</th>

</tr>

<scriptlanguage="JavaScript"type="text/javascript">

for(i=0;i<navigator.plugins.length;i++){

document.write("<tr><td>");

document.write(navigator.plugins[i].name);

document.write("</td><td>");

document.write(navigator.plugins[i].filename);

document.write("</td><td>");

document.write(navigator.plugins[i].description);

document.write("</td></tr>");

}

</script>

</table>

</body>

</html>

Output

Controlling Multimedia

Let us take one real example which works in almost all the browsers −

<html>

<head>

<title>Using Embeded Object</title>

<scripttype="text/javascript">

<!--

functionplay(){

if(!document.demo.IsPlaying()){

document.demo.Play();

}

}

functionstop(){

if(document.demo.IsPlaying()){

document.demo.StopPlay();

}

}

functionrewind(){

if(document.demo.IsPlaying()){

document.demo.StopPlay();

}

document.demo.Rewind();

}

//-->

</script>

</head>

<body>

<embedid="demo"name="demo"

src="http://www.amrood.com/games/kumite.swf"

width="318"height="300"play="false"loop="false"

pluginspage="http://www.macromedia.com/go/getflashplayer"

swliveconnect="true">

<formname="form"id="form"action="#"method="get">

<inputtype="button"value="Start"onclick="play();"/>

<inputtype="button"value="Stop"onclick="stop();"/>

<inputtype="button"value="Rewind"onclick="rewind();"/>

</form>

</body>

</html>

JavaScript The Complete Reference (2012)

PART III Applied JavaScript

CHAPTER 3 Windows, Frames, and Overlays

Now it is time to begin to put the syntax and theory we have covered

up to this point in the book to use. Starting from the top of the object

hierarchy with Window, we will explore some applications of

JavaScript. In this chapter, we will learn how to create a variety of

windows, including alerts, confirmations, prompts, and custom pop-

up windows of our own design. We will also show how windows and

frames are very much related. Finally, we’ll discuss the problematic

special cases of window management and how overlays have become

a needed tool in the JavaScript developer’s toolbox.

Introduction to the window Object

JavaScript’s Window object represents the browser window, or

potentially frame, that a document is displayed in. The properties of a

particular instance of Window might include its size, amount of

chrome—namely the buttons, scroll bars, and so on—in the browser

frame, position, and so on. The methods of the Window include the

creation and destruction of generic windows and the handling of

special-case windows such as alert, confirmation, and prompt dialogs.

The Window, at least in the case of browser-based JavaScript, defines

the universe, and most everything lives within it. As the topmost

object in the JavaScript browser-document object hierarchy, Window

contains references to any of the DOM or browser-related objects we

have presented to this point, as well as any user-defined global values;

thus it seems appropriate to start our discussion of applied JavaScript

with it.

As we have discussed numerous times in the book, the Window is not

only home to many useful properties, methods, and objects but to the

variables and functions that we define in our scripts. For example, if

we define a variable likeJavaScript and set it to true,

and we are not within function scope, that variable is global and, as

such, becomes a property of the Window object. In other words, if we

write code like this:

it is the same as if we were to write this code:

Yet, even more interesting, the alert() method itself is part of the

Window, so

is also the same thing.

As we have discussed earlier, we must be quite careful not to collide

with other scripts’ global variables. Thus we would tend to use a

wrapper object to house our variables, therefore limiting our exposure

to the global name space as much as possible:

It turns out that such a scheme of limiting our identifier footprint isn’t

just useful to avoid clashing with other included scripts, but to avoid

clashing with the properties, methods, and objects of the Window

object itself.

Table 12-1 shows the properties, including objects, of the Window

object, while Table 12-2 shows its methods. The tables contain data

collected primarily from the HTML5 specification; however, they

also include proprietary properties and methods that have spread

across multiple browsers or are often seen in real-world code bases.

These tables should provide a useful roadmap to the Window object.

Table 12-1 window Properties and Objects

Table 12-2 window Methods

Given the wide range of properties and methods in the Window

object, we focus in this chapter on the creation and management of

windows. Subsequent chapters will address some of the important

objects such as Navigator, Document, Screen, and so on.

Dialogs

We begin our discussion of the application of the Window object by

presenting how to create three types of special windows known

generically as dialogs. A dialog box, or simply dialog, is a small

window in a graphical user interface that “pop ups,” requesting some

action from a user. The three types of basic dialogs supported directly

by JavaScript include alerts, confirms, and prompts. How these

dialogs are natively implemented is somewhat rudimentary, but in the

next section we’ll see that once we can create our own windows we

can replace these windows with our own.

alert()

The Window object’s alert() method creates a special small window

with a short string message and an OK button, as shown here:

NOTE The visual representation of an alert dialog can vary widely

between browsers and may or may not include an icon and

information about what is issuing the alert. The icon may be browser

focused or unfortunately may look like a warning, regardless of the

meaning of the message being presented.

The basic syntax for alert is

or, for shorthand, we just use

as the Window object can be assumed. The string passed to any dialog

such as an alert may be either a variable or the result of an expression.

If you pass another form of data, it will be coerced into a string. All of

the following examples are valid uses of the alert method:

An alert window is page modal, meaning that it must receive focus

and be cleared before the user is allowed to continue activity with the

page.

One common use of alert dialogs is debugging messages. While this

seems an acceptable use of alerts, it is generally more appropriate to

pipe such messages to a browser’s console using the console.log()

method. Not only does this keep the message outside the view of the

casual user, but often you need to issue many debugging traces, and

the alert’s modal nature may be both annoying and inappropriate,

depending on what the code is doing.

confirm()

The confirm() method creates a window that displays a message for a

user to respond to by pressing either an OK button to agree with the

message or a Cancel button to disagree with the message. A typical

rendering is shown here:

The writing of the confirmation question may influence the usability

of the dialog significantly. Many confirmation messages are best

answered with a Yes or No button, rather than an OK or a Cancel

button, as shown by the following dialog:

Unfortunately, using the basic JavaScript confirmation method, there

is no possibility of changing the button strings, so choose your

message wisely. Fortunately, later we’ll see it is quite possible to

write your own form of confirmation.

The basic syntax of the confirm() method is

or simply

where string is any valid string variable, literal, or expression that

either evaluates to or will be coerced into a string that will be used as

the confirmation question.

The confirm() method returns a Boolean value, which indicates

whether or not the information was confirmed, true if the OK button

was pressed, and false if the Cancel button was pressed or the dialog

was closed, as some older browsers allow for. The return value can be

saved, like so:

or the method call itself can be used within any construct that uses a

Boolean expression such as an if statement:

Like the alert() method, confirmation dialogs should be browser

modal.

The following example shows how the alert and confirm can be used:

ONLINE http://javascriptref.com/3ed/ch12/alertconfirm.html

prompt()

A prompt window invoked by the prompt() method of the Window

object is a small data collection dialog that prompts the user to enter a

short line of data, as shown here:

The prompt() method takes two arguments. The basic syntax is shown

here:

The first parameter is a string that displays the prompt value, and the

second is a default value to put in the prompt window. The method

returns a string value that contains the value entered by the user in the

prompt.

The shorthand prompt() is almost always used instead of

window.prompt(), and occasionally programmers will accidentally

use only a single value in the method:

However, in many browsers you may see that a value of undefined is

placed in the prompt line. You should set the second parameter to an

empty string to keep this from happening:

When using the prompt() method, it is important to understand what

is returned. If the user presses the Cancel button in the dialog or the

close box, a value of null will be returned. It is always a good idea to

check for this. Otherwise, a string value will be returned.

Programmers should be careful to convert prompt values to the

appropriate type using parseInt(), parseFloat(), or another type

conversion scheme if they do not want a string value.

The following example shows the prompt() method in action:

ONLINE http://javascriptref.com/3ed/ch12/prompt.html

Emerging and Proprietary Dialog Methods

The format of these last three dialogs leaves a little to be desired. We

explore a few emerging and proprietary mechanisms before moving

on to creating our own windows from scratch.

showModalDialog()

Internet Explorer introduced a modal window, which was later

incorporated into the HTML5 standard. Like a standard dialog, this

more generic window is modal to the page and must be dismissed

before moving on. The basic syntax for creating a modal dialog is

where

• URL of dialog is a URL of the document to display.

• arguments are any objects or values you wish to pass to the modal

dialog.

• features is a semicolon-separated list of display features for the

dialog.

The features string should be the same as what is supported by

window.open(), which will be covered shortly, though MSDN syntax

shows some variations that will likely change as this is standardized.

A simple example of this method is shown here:

The showModalDialog() method also returns a value. To accomplish

this, set the window.returnValue property in the dialog and the return

of this value will happen automatically. This mechanism allows for

the simple creation of user prompt and confirmation dialogs, which

must return a value.

The second parameter can be an arbitrary argument. This object is

accessible within the dialog with the window.dialogArguments

property. Internet Explorer supports some additional dialog

properties, including window.dialogWidth, window.

dialogHeight, window.dialogTop, and window.dialogLeft.

showModelessDialog()

Microsoft also introduced a modeless window that is very different

from a modal dialog. While both dialog boxes always maintain focus,

a modeless window does allow you to focus in the window that

created the dialog. A common use for this might be to display help or

other very contextual useful information. However, while different in

function, a modeless window is syntactically similar to the modal

dialog.

The method parameters are the same, but the returned value is not a

value created within the dialog. Instead, it’s a reference to the created

window in case it is manipulated at a later time. This would be

similar, then, to the value returned by window.open(). A simple

example of the syntax for creating a modeless window is shown here:

Readers should remember that this syntax is not currently covered

under the HTML5 specification.

createPopup()

A special window form supported by Microsoft is a generic form of

pop-up window. Creating a pop-up is very simple—just use the

window.createPopup(), which takes no arguments and returns a

handle to the newly created window:

These windows are initially created but are hidden. They are later

revealed using the popup object’s show() method and hidden using

hide(), as shown here:

The value of Microsoft’s special pop-ups may not be obvious until

you consider that they have more control over their appearance than

standard JavaScript dialogs. In fact, initially you could even remove

the chrome of the displayed window. Chromeless windows were,

however, abused by those looking to phish end-user passwords. Often

these windows were used to position over the URL bar or perform

other trickery. Today their use is severely limited in Internet Explorer.

A complete example showing the use of all three of these unusual

dialog windows is shown here:

ONLINE http://javascriptref.com/3ed/ch12/specialdialogs.html

Opening and Closing Generic Windows

While the alert(), confirm(), and prompt() methods create specialized

windows quickly, it is often desirable to open arbitrary windows to

show a Web page or the result of some calculation. The Window

object methods open() and close() are used to create and destroy a

Window, respectively.

When you open a Window, you can set its URL, name, size, buttons,

and other attributes, such as whether or not the window can be

resized. The basic syntax of this method is

where

• URL is a URL that indicates the document to load into the window.

• name is the name for the window (which is useful for referencing it

later on using the target attribute of HTML links).

• features is a comma-delimited string that lists the features of the

window.

• replace is an optional Boolean value (true or false) that indicates

whether or not the URL specified should replace the window’s

contents. This would apply to a window that was already created.

A simple example of this method is

This would open a window to Google with a height of 300 pixels, a

width of 600 pixels, and scroll bars, as shown here:

Of course, because we spawn the window directly, your browser’s

pop-up blocker might get in the way. We’ll discuss handling that in a

bit, but for now we might want to focus on triggering window

creation rather than just having it occur directly. Obviously, there are

a variety of ways programmers might trigger the creation of windows,

but most often links or buttons are used, as shown here:

ONLINE http://www.javascriptref.com/3ed/ch12/windowopentrigger

.html

One useful feature from the dialogs in the previous section was the

ability to send arguments to the new dialog box. This is not possible

with window. open(), as window . open() does not receive an

arguments parameter. However, window.openDialog() functions

mostly the same as window.open(), with the exception that it has the

ability to send arguments. The arguments would come after the

features parameter, and there is no limit to the number of arguments

that can be passed. The arguments can be accessed within the new

window with thewindow.arguments property.

Once a window is open, the close() method can be used to close it.

For example, the following fragment presents buttons to open and

close a window. Make sure to notice the use of

the secondWindow variable that contains the instance of the Window

object created:

First, we notice that the variable secondWindow is in the global scope.

Certainly not the best way to code, but we must have a reference to

the created window in order to run the close() method. Obviously, a

better solution would be to use some wrapper object to house any

global references we need, like so:

Next, we should address the usage of the close() method, which is

rather dangerous. If the new window does not yet exist, the script will

throw an error. Reload the previous example and press the Close

button immediately, and you should get an error. In order to safely

close a Window, you first need to look for the object and then try to

close it. Consider the following if statement that looks to see if

the JSREF.secondWindow value is defined before looking at it; then it

will look at the closed property to make sure it is not already closed:

Notice that this previous example actually specifically relies on short-

circuit evaluation, because if the value in JSREF.secondWindow is

undefined, then trying to look at its closed property would throw an

error. The following short example shows the safe use of the

Windowmethods and properties discussed so far:

ONLINE http://www.javascriptref.com/3ed/ch12/windowclose.html

TIP If you create a window within an HTML tag’s event handler

attribute, remember that the variable scope will not be known outside

of that tag. If you want to control a window, very likely you will need

to define it in the global scope.

Besides checking for the existence of windows before closing, be

aware that you cannot close windows that you have not created,

particularly if security privileges have not been granted to the script.

In fact, you may even have a hard time closing the main browser

window. For example, if you have a statement such as window.close()

in the main browser window running the script, it may be denied—

some older browsers may prompt you to confirm and others will close

the window down without warning.

Window Features

When creating new windows within window.open(), there are a

number of possibilities for the feature parameter, which is quite rich

and allows you to set the height, width, scroll bars, and a variety of

other window characteristics. The possible values for this parameter

are detailed inTable 12-3.

Table 12-3 Feature Parameter Values for window.open()

NOTE Typically, in modern JavaScript implementations, you can use

1 for yes and 0 for no for the features using yes/no values. However,

for safety and backward compatibility, the yes/no syntax is preferred.

Oftentimes when using the open() method, you may want to create

strings to hold the options rather than use a string literal. However,

when the features are specified, remember that they should be set one

at a time with comma separators and no extra spaces. For example,

The next example is useful for experimenting with all the various

window features that can be set. It also will display the JavaScript

string required to create a particular window in a text area so it can be

used in a script.

NOTE In addition to the height and width properties, in Firefox it is

possible to set the size of the window through the

window.sizeToContent() method, which will set the size of the

window to fit the content rendered.

ONLINE http://javascriptref.com/3ed/ch12/windowopen.html

A rendering of the previous example is shown in Figure 12-1.

Figure 12-1 Rendering of window. open() example

Sadly, if you try the previous example, you will find that many

features no longer work. For example, the stacking properties, such as

alwaysLowered, alwaysRaised, and z-lock, likely will not work due to

security abuses. You will find also that it is impossible to size

windows smaller than say 50 × 50 pixels for similar reasons. You

can’t even hide the location, as it will always show up in most

browsers. Modifying the menu bars is just as problematic. We’ll see

that, given these spotty issues, custom windows are fading into the

past in Web development. Some changes to the HTML5 specification,

though, do give us hope that the situation may be rectified someday.

Detecting and Controlling window Chrome

HTML5 introduces a standard way to understand what chrome

elements such as menus may be showing on the main window or any

spawned window. A number of BarProp objects exist, including the

following:

Each of these objects corresponds to the similarly named browser

menu. The object currently contains a single property called visible

that indicates whether or not the menu is showing. When a script is

executing in a privileged mode, it may be possible to set this value for

control, but at this point it certainly is not allowed outside of that. A

simple example of this emerging aspect of Window is shown here,

and readers are encouraged to explore these objects further, as they

are likely to be expanded on:

ONLINE http://javascriptref.com/3ed/ch12/barprop.html

Practicalities of Spawned Windows

The reality of windows in browsers is less than clean. Adding content

to newly created windows can be a chore, depending on how it is

done, and sloppy mistakes can cause trouble. Security concerns

abound for the size and position of windows, and pop-up blockers can

cause lots of trouble. In fact, for many JavaScript developers,

subwindows have long since been abandoned for pseudo-windows in

the form of <div>–based overlays.

Building window Contents

When opening a new window, it is quite easy to populate it if you

have an existing document at some URL:

However, if you need to create a window directly, there are a number

of ways it can be done. First, you might fall to traditional

document.write() use, like so:

Notice a few points here. First, the use of document.close(). Without

this statement, some browsers will assume there is more content

coming, so the window will appear never to finish loading, while

others will close implicitly. Given this variability, it is quite important

to have this method call. Second, notice the use of

document.writeln(). If we are looking to build clean-looking HTML

source, this inserts newlines. However, unless we expect people to

view the source of a spawned window with a debugging tool, this is

kind of pointless. We certainly could usedocument.write() and add in

\n characters if we wish:

Of course, even having a multitude of document.write() statements

seems wrong, and indeed it is, as it may cause performance concerns.

Instead, we may gather content for output in a string variable and

output it at once:

You may opt to perform DOM calls to create the elements, but this

seems to us to be an exercise in lots of code for little value. If you

must go that route, you could instead employ the innerHTML

property, like so:

Notice that we don’t construct all the pieces of the document. We

certainly could have, but the browser will scaffold a base tree for us

anyway.

Reading and Writing Existing Windows

We do not use document.write() after a window is created unless we

desire to wipe the entire page clean. Instead, we reply on DOM

methods to insert and change the HTML in the new document at will.

The only difference is that now you must make sure to use the new

window’s name when accessing a DOM method or property. For

example, if you had a window called newWindow, you would use

statements such as the following to retrieve a particular element in the

other window:

The following simple example shows how information entered in one

window can be used to create an element in another window:

ONLINE http://javascriptref.com/3ed/ch12/windowadd.html

Full-Screen Windows

Creating a window that fills up the screen and even removes browser

chrome is possible in many browsers. It has long been possible to

figure out the current screen size by consulting window.screen

properties and then create a new window that fits most or all of the

available area. The script fragment presented here should work to fill

up the screen in all modern browsers:

The previous “poor man’s” script does keep the browser chrome and

may not quite fill up the window. Under Internet Explorer and

potentially other browsers, it may be possible to go into a full-screen

mode more directly, using a feature string value, like so:

ONLINE http://javascriptref.com/3ed/ch12/fullscreen.html

Some archaic browsers needed a more complicated script and even

prompted the user if a security privilege should be granted to go full

screen. The fact that older browsers warned users before going full

screen is quite telling, especially once you consider that some users

will not know how to get out of full-screen mode. The key

combination ALT+F4 should do the trick on a Windows system.

However, users may not know this, so you should provide a Close

button or instructions for how to get out of full-screen mode.

Firefox offers a window.fullScreen property that holds a Boolean

indicating whether or not the window is in full-screen mode.

Centering Windows

Even things that should be easy with JavaScript windows are not that

easy. For example, if we try to center a spawned Window, we might

be tempted to center it to the screen. That is fairly straightforward if

we consult the screen dimensions found in the Screen object:

However, you are more likely to want to center a spawned window in

relation to the spawning Window. This becomes a bit trickier because

of the way the inner and outer browser Window dimensions are

calculated and because of the variation in a browser’s toolbar and

button heights. The following example shows roughly what you

would do:

ONLINE http://javascriptref.com/3ed/ch12/windowcenter.html

It seems that the more you try to make spawned windows work, the

more trouble you discover. We save the final straw before presenting

the “solution” most developers adopt.

Pop-up Blockers

The most significant drawback to spawned windows is that many

browsers may kill their load because of the abuse of so-called pop-ups

online for advertising and other purposes. Generally, if a window is

created on page load, timer, or without some user-initiated action, the

browser will try to block it, as shown here:

Obviously, if you are counting on a window being raised for some

custom dialog or important functionality, a pop-up blocker can be

quite troublesome. This leads developers to question whether a pop-

up blocked can be detected. The answer, unfortunately, is

“sometimes.” The general method to pop-up blocking detection is to

try to open a pop-up window on load and then see if it exists or if it

has the closed property set to true. Note that even pop-up blockers

allow pop-ups when there is user interaction, so the test must be done

without the input from the user.

Unfortunately, this isn’t a perfect solution. Browsers vary in how they

address pop-ups. For example, Chrome opens the window and hides

it, so this test fails for Chrome. The accepted method in Chrome is to

wait a little bit and then check the innerWidth. If it is blocked, it will

be 0. You do have to wait a bit because right on pop-up load the

innerWidth is still set to 0, even when pop-ups are allowed. In

addition, if the user manually allows the pop-up, it likely will not be

detected properly, as the detection code will run before the pop-up is

launched. Other issues will likely emerge as time passes. A simple

example showing this less-than-optimal detection scheme is given

here:

ONLINE http://javascriptref.com/3ed/ch12/popupdetector.html

Besides all the browser quirks, the pop-up detection scheme is quite

imperfect because we can see the detection window. There are just

too many problems with spawned windows because of past abuse, so

many developers have left them in favor of CSS-based overlays.

Overlays Instead of Windows

Unfortunately, as we have seen, simple dialogs such as alert() and

prompt() lack customization. You may opt to try to create custom

dialogs using the generic window.open() method. However, in either

case, the dialogs may be blocked by browser-based or third-party pop-

up blockers installed by the user. To address both the customization

concerns and pop-up blockers, many designers have turned to what

we dub “div dialogs,” named for the HTML <div> tag used to create

them. Using CSS, designers can position <div> tag–based regions

over content and customize them visually in whatever manner they

like.

The creation of a div dialog follows standard DOM tag-building code.

First, the <div> tag that would be used as the custom dialog would be

created and positioned:

Then the various elements would be added to the dialog, typically one

at a time, unless you resort to using the innerHTML property:

We show only a snippet here because it gets quite lengthy as the

messages and various controls to dismiss the dialog are added, and the

repetitious code adds little to the discussion. Once performed, though,

the procedure can be abstracted into a custom function such as

createDialog(), where you could indicate the type of dialog, message,

and style needed.

After all of the various elements have been added to the dialog, the

region is displayed at the desired page position. However, there is one

important consideration we need to mention before pointing readers to

the complete example online: the issue of modality. Normally, alert()

andconfirm() dialogs are application modal, meaning that the user

must address them before moving on to another browser-based

activity. To simulate modality, we create a translucent region that

covers the browser window or region we want to be model to. To do

this first, create a <div>tag to serve as the modality overlay:

Now, make sure the appropriate CSS is applied to make the overlay

translucent and covering the region to shield from user activity. The

class name set in the preceding function does this and is shown here

as reference:

Finally, append it in the document along with the dialog, as shown

here:

A simple example demonstrating simple <div>–based dialogs is

shown here and previewed in Figure 12-2:

Figure 12-2 Overlay in action

ONLINE http://javascriptref.com/3ed/ch12/overlay.html

Note that our aim in this section is not to provide a complete solution

with different dialog types, return values, styles, and the like. This

would be best suited for a library. Our intention here is to show the

technique only.

Controlling Windows

As we have seen so far, it is easy enough to open and close windows

as well as write content to them. There are numerous other ways to

control windows.

focus() and blur()

It is possible to bring a window to focus using the window.focus()

method. This should raise the window for access. Conversely, it is

also possible to do the opposite using the window.blur() method.

NOTE There may be security considerations in Internet Explorer that

may cause a window not to respect a focus() invocation. Test your

browser or consult the Microsoft Developer Network (MSDN) for the

latest information, as it changes between versions of Internet

Explorer.

stop()

Some methods of window control address common browser

functions. For example, if a window is taking a long time to load, an

end user may hit the Stop button. This can be accomplished

programmatically with the window.stop() method.

print()

The HTML5 specification standardizes window.print(), which has

long been supported by browsers. Firing this method should raise a

dialog first, like so:

find()

Some browsers implement the nonstandard window.find() method.

The syntax of this method is historically written to be

window.find(targetstring, casesensitivity, backwards, wraparound,

wholeword, searchinframes, showdialog)

where

• targetstring is the string to find.

• casesensivity is a Boolean value that, if true, indicates that the search

should be performed with case sensitivity.

• backwards is a Boolean value that, if true, indicates that the search

should proceed backward rather than forward.

• wraparound is a Boolean value that, if true, indicates that the search

should wrap to the top of the document once the bottom is hit.

• wholeword is a Boolean value that, if true, indicates that the search

should only match whole words.

• searchinframes is a Boolean value that, if true, indicates that the

contents of frames within the window should be searched.

• showdialog is a Boolean value that, if true, shows the browser’s

search dialog.

The reality is that, generally, this isn’t the case. However, some

browsers will support a simple invocation of window.find() to pop the

browser’s find command, as shown here:

Given the eventual coverage of printing, this actually doesn’t seem a

long shot to be eventually codified and more widely supported,

though admittedly that is still speculation at this point.

NOTE There are a few other possibilities for browser-related window

actions such as adding bookmarks or even trying to programmatically

set the home page. However, these are not only nonstandard but also

poorly supported.

Moving Windows

Moving windows around the screen is possible using two different

methods, window.moveBy() and window.moveTo(). The moveBy()

method moves a window a specified number of pixels and has a

syntax of

where

• windowname is the name of the window to move or is called just

Window if it is the main window.

• horizontalpixels is the number of horizontal pixels to move the

Window, where positive numbers move the window to the right and

negative numbers to the left.

• verticalpixels is the number of vertical pixels to move the Window,

where positive numbers move the window down and negative

numbers up.

For example, given that a window called myWindow exists, the

following would move the window down 100 pixels and to the right

100 pixels:

If you have a particular position in the screen to move a window to, it

is probably better to use the window.moveTo() method, which will

move a window to a particular x,y coordinate on the screen. The

syntax of this method is

where

• windowname is the name of the window to move or is called

Windowif it is the main window.

• x-coord is the screen coordinate on the x-axis to move the window

to.

• y-coord is the screen coordinate on the y-axis to move the window

to.

So given that the window called myWindow is on the screen, the

following would move the window to the origin of the screen:

Resizing Windows

In JavaScript, the methods for resizing windows are very similar to

the ones for moving them. The method window.resizeBy(horizontal,

vertical) resizes a window by the values given

in horizontal and vertical. Negative values make the Windowsmaller,

while positive values make it bigger, as shown in the examples here:

Similar to the moveTo() method, window.resizeTo(width, height)

resizes the window to the specified width and height indicated:

NOTE In modern JavaScript implementations, it is not possible to

resize browser windows to a very small size, say 1 × 1 pixels. This

could be construed as a security hazard, as a user may not notice such

a minuscule window spawned by a site after leaving it.

Scrolling Windows

Similar to resizing and moving, the Window object supports the

scrollBy() and scrollTo() methods to correspondingly scroll a window

by a certain number of pixels or to a particular pixel location. The

following simple examples illustrate how these methods might be

used on some window called myWindow:

NOTE The method scroll() may occasionally be encountered. While

the syntax of scroll() is identical to scrollBy(), the method is

nonstandard and should be avoided. In addition, scrollByLines(lines)

and scrollByPages(pages) are two similar methods supported only by

Firefox. The same effect can be achieved with scrollBy(), so again we

recommend using only scrollBy().

In addition to scrolling the Window, it is often desirable to see where

the browser has been scrolled to. Different actions may occur,

depending on where the user is on the page. However, finding the

scroll location is quite different depending on the browser. The most

obvious properties to look at would be scrollX and scrollY. However,

these properties are not supported by Opera and Internet Explorer.

The pageXOffset and pageYOffset properties are now supported in all

major browsers, including Internet Explorer from version 9. In order

to get the scroll position before version 9, it is necessary to look at the

document.documentElement.scrollLeft and

document.documentElement.scrollTop properties:

A complete example presented here can be used to experiment with

the various common Window methods that we have discussed here:

ONLINE http://javascriptref.com/3ed/ch12/windowmethods.html

An example rendering of the previous example is shown in Figure 12-

3.

Figure 12-3 Controlling standard spawned windows

Accessing and Setting a Window’s Location

It is often desirable to set a window to a particular URL. There are

numerous ways to do this in JavaScript, but the best way is to use the

Location object, which is a property of Window. The Location object

is used to access the current location (the URL) of the window.

TheLocation object can be both read and replaced, so it is possible to

update the location of a page through scripting. The following

example shows how a simple button click can cause a page to load:

Rather than direct assignment, you can use the assign() method as

well.

NOTE Internet Explorer defined the nonstandard

window.navigate(URL), which will load the specified URL

parameter, similar to setting the location value. This is a nonstandard

method that should be avoided, though it is also supported in some

other browsers, notably Opera.

Regardless of the method used to change the URL, the new location

will be added to the browser history. If you desire to replace the

current page in history, use the replace() method:

If you just want to refresh the page without setting the URL, you may

use the reload() method:

A complete list of the methods is shown in Table 12-4.

Table 12-4 Location Methods

It is also possible to access parsed pieces of the Location object to see

where a user is at a particular moment. A few examples are shown

here:

The properties of the Location object are pretty straightforward for

anyone who understands a URL. A complete list of these properties

can be found in Table 12-5.

Table 12-5 Common Properties of the Location Object

One property that bears some attention is search. This property

contains the query string, and very likely you will want to break it up

into its constituent name-value pairs. Some simple string

manipulations will do the trick:

Finally, an emerging method called resolveURL() is specified under

HTML5. This method returns the absolute path of a relative URL

passed in. For example,

would show a dialog with the URL

http://javascriptref.com/index.html.

NOTE No browser has implemented this method at the time of this

edition’s writing.

To conclude the section, we present an example demonstrating the

various properties and methods of the Location object:

ONLINE http://javascriptref.com/3ed/ch12/location.html

Hash Values in URLs

One aspect of URLs that deserves a mention is the hash portion that

specifies the fragment identifier of the page. Reading the value is

obviously quite easy.

Setting the hash is just as easy.

Obviously, this will change the hash, but notice that the Web browser

does not refresh while the hash value typically creates an entry in the

browser’s history.

NOTE In some older browsers, hash changes were not handled

properly when screen refreshes did not happen; the history was not

actually affected, which defeats the purpose of “fixing” the back

button action.

The nonrefreshingbehavior of the fragment identifier URL is quite

useful, as it allowed Web developers building Ajax and Flash

applications to push a change to the URL for history and bookmark

management without a page reload. HTML5 codifies this action by

adding anonhashchange event to easily signal the potential change of

state. An example of this is demonstrated here:

A more appropriate way to handle statement management is provided

by HTML5 with the pushstate() and replacestate() methods of the

History object, which are discussed next.

Manipulating a Window’s History

When users press their browser’s Back or Forward button, they are

navigating the browser’s history list. JavaScript provides the History

object as a way to access the history list for a particular browser

window. The History object is a read-only array of URL strings that

show where the user has been recently. The main methods allow

forward and backward progress through the history, as shown here:

NOTE You should be careful when trying to simulate the Back

button with JavaScript, as it may confuse users who expect links in a

page labeled “Back” not to act like the browser’s Back button.

It is also possible to access a particular item in the history list relative

to the current position using the history.go() method. Using a negative

value moves to a history item previous to the current location, while a

positive number moves forward in the history list. For example:

Given that it is possible to read the length of the history[] array using

the history.length property, you could easily move to the end of the

list using the following:

Direct access to the URL elements in the history is not possible with

JavaScript; in the past, however, unscrupulous individuals have

shown that calculated guesses of URLs in conjunction with the

rendered styles of visited links can reveal past browsing habits. A

simple example of a less nefarious use of the History object can be

found online.

ONLINE http://www.javascriptref.com/3ed/ch12/history.html

pushstate() and replacestate()

The rise of Web applications and Ajax require much more

programmer intervention in history management than in the past. On

the Web, traditionally each unique URL represented a unique page or

state of the Web application. However, in an Ajax-style application,

often this is not the case. In order not to break the Back button and

other Web semantics such as bookmarking, ingenious developers

discovered that they could use the hash value to indicate a state

change because it did not cause a browse screen refresh. The HTML5

specification attempts to ease this transition with the introduction of

the window. pushState() and window.replaceState() methods.

The syntax of the pushState() method is

where

• stateObject is a JSON structure containing the information to save.

• title is the title for the browser’s title bar and/or history list.

• URL is the URL to display in the browser’s location, though there is

not a network load related to this, so the URL can be arbitrary.

When pushState() is called, it changes the browser’s URL to the

passed-in URL. This will not necessarily be related to a network load;

however, the newly set URL will be used in the Location object as

will the Referer header on network requests. After being set, a future

use of the browser’s Back or Forward button will fire the

window.onpopstate event and will receive the saved state object.

The syntax of the replaceState() method is pretty much the same:

The only difference is that the stateObject replaces the current history

item rather than making a new one. An example that can be used to

explore these methods is shown here:

ONLINE http://javascriptref.com/3ed/ch12/pushreplacestate.html

NOTE Browsers may save state values to the user’s disk so they can

be restored after the user restarts the browser. Because of this, there

may be a size limit to the JSON representation of the user’s state. For

example, in the case of Firefox this limit is currently 640K characters.

Saving state information beyond this would require the use of another

mechanism such as sessionStorage or localStorage.

Trying to Control the Window’s Status Bar

The status bar is the small text area in the lower-left corner of a

browser window where messages are typically displayed, indicating

download progress or other browser status items. Traditionally, it was

possible to control the contents of this region with JavaScript. Many

developers used this region to display short messages or even

scrolling regions. The benefit of providing information in the status

bar is debatable, particularly when you consider the fact that

manipulating this region often prevents default browser status

information from being displayed—information which many users

rely on.

Today the use of the status bar is quite limited, as many browsers

simply do not show the status region anymore. In some browsers, it

does not appear possible even to turn it on anymore. Even when the

status bar can be seen, because of past abuse by phishers looking to

trick end users, manipulation of the status bar via JavaScript is

generally disallowed. As an example, note the advanced settings

defaults for JavaScript in a recent version of Firefox showing this to

be restricted:

The status bar can be accessed through two properties of the Window

object: status and defaultStatus. The difference between these two

properties is in how long the message is displayed. The value of

defaultStatus is displayed any time nothing else is going on in a

browser window. The status value, on the other hand, is transient and

is displayed only for a short period as an event (such as a mouse

movement) happens. The simple example here exercises both

properties:

ONLINE http://www.javascriptref.com/3ed/ch12/status.html

When trying the example, quite likely you may not see the status bar

at all. Some browsers will return the values you set, but it will serve

little practical purpose. Others will do nothing. Sadly, the status bar is

but one example of a surgical removal of features in browsers to solve

security or improve perceived usability. This implies that scripts may

work for some time before “rusting” away, as browser changes

remove their value, so developers should aim to be aware of evolution

of platforms, as it can affect their code.

Setting window Timeouts and Intervals

The Window object supports methods for setting timers that we might

use to perform a variety of functions. These methods include

setTimeout() and clearTimeout(). The basic idea is to set a timeout to

trigger a piece of script to occur at a particular time in the future. The

common syntax is

where

• script-to-execute is a string holding a function call or other

JavaScript statement.

• time-in-milliseconds is the time to wait before executing the

specified script fragment.

time-in-milliseconds has different minimum values depending on the

browser, the method, and even the window’s active/inactive status.

Notice that the setTimeout() method returns a handle to the timer that

we may save in a variable, as specified by timerId. We might then

clear the timeout (cancel execution of the function) later on using

clearTimeout(timerId). The following example shows how to set and

clear a timed event:

ONLINE http://javascriptref.com/3ed/ch12/settimeout.html

The setInterval() and clearInterval() methods should be used when a

timed event occurs at a regular interval. Here is an example of the

syntax of an interval:

This example sets an alert that will fire every two seconds. To clear

the interval, you would use a similar method as a timeout:

Now, quite often you will want to execute more than a bit of code in a

timer or interval, and either method does allow you to pass in a

function as you would with setting an event handler. This means that

you can pass simply the function name, as shown here:

In all browsers besides Internet Explorer, after the delay you can also

pass parameters to pass to the later invoked function:

Likely you are not going to pass the parameters in this manner, as

Internet Explorer browsers don’t support it. Instead, we might pass

parameters with a closure:

Of course, like any closure, we need to make sure we are careful that

we get the value we want. For example, as with all closures, be

careful inside of loops because the parameter will change as the loop

goes on. The following example illustrates all of these points:

ONLINE http://javascriptref.com/3ed/ch12/settimeoutparams.html

There is some concern about how accurate and fast timers are. A

number of developers have noted that when setting timeouts to 0 ms,

the effect rate of the timeout can vary by many milliseconds, though it

does generally enforce the timed event to be the next action taken.

Timing accuracy certainly is not guaranteed, even if order is

preserved. It is interesting to note at this edition’s writing the

inclusion in Gecko-based browsers of an extra parameter that

indicates the “lateness” of the timeout in milliseconds. Likely, this is a

portend of things to come, and we expect more emphasis on timing

details as developers continue to push JavaScript to more time-

sensitive tasks.

Window Events

The Window object supports many events. The HTML5 specification

attempts to clear up the cross-browser nightmare. Traditionally, most

developers stuck with the obviously safe cross-browser window

events such as onblur, onerror, onfocus, onload, onunload, onresize,

and so on. However, as shown in Table 12-6, there are many more

events available than those useful few.

Table 12-6 window Events under HTML5

Adding window events handlers can be set through HTML event

attributes on the <body> element, like so:

or more registering events can be set through the Window object:

Chapter 11 has full details on event handling, in case you are

wondering how to bind or test anything.

As time marches on, browser vendors continue to add numerous

events to the Window object. A list of those known at this edition’s

publication is detailed in Table 12-7. Check your browser

documentation for any others that may have been added since then.

Table 12-7 Selected Proprietary window Events

Interwindow Communication Basics

For applications that have multiple windows launched, it is especially

important to understand the basics of communicating among

windows. Normally, we access the methods and properties of the

primary window using the object instance named simply window, or

more likely we just omit the reference. However, if we want to access

another Window, we need to use the name of that window. For

example, given a window named “myWindow,” we could access its

document object as mywindow.document, and thus we could run any

method such as writing to the document:

or accessing it with standard DOM methods:

The key to communicating between windows is knowing the name of

the window and then using that name in place of the generic object

reference window. Of course, there is the important question of how

you reference the main window from a created window. The primary

way is using the window.opener property that references the Window

object that created the current window. The simple example here

shows how one window creates another and how each is capable of

modifying the other’s DOM tree, as well as reading script variables:

ONLINE http://javascriptref.com/3ed/ch12/simplewindowcommunic

ation.html

Now, one limitation of this traditional communication method is that

it requires that the communicating windows be spawned by the same

origin; thus it is not at all possible to talk to windows from other

domains. HTML5 introduces new facilities that should allow for a

much more flexible message passing system.

Interwindow Message Passing with postMessage()

HTML5 expands on the idea of passing data between windows with

the postMessage() method. The syntax of this method is

where

• message is the message to pass.

• targetOrigin is the domain to which the target window must belong.

While you can use wildcards such as “*” to allow any origin, this is

not recommended.

Next, you can listen for incoming messages in windows by setting up

a handler for window.onmessage. The event object sent to the event

handling function will contain a data, origin, and source property

where data is the actual message received, origin is the domain the

message came from, and source is a reference to the Window object

that sent the message.

Once again, as there are security concerns communicating between

domains, we should check the origin and source carefully. A simple

example passing data between two domains held by one of the authors

is shown here. The first page is the page sending the message and the

second page is the page receiving the message and replying:

ONLINE http://javascriptref.com/3ed/ch12/postMessageCrossDomai

n.html

ONLINE http://htmlref.com/examples/childMessage.html

Figure 12-4 shows the parent page receiving calculations from the

child.

Figure 12-4 Message passing in action

The postmessage() passing scheme obviously requires a modern

browser, but it suggests a very elegant way to have windows

communicate. We wrap up the chapter with a return to the past, while

also addressing the relationship between windows and frames.

Frames: A Special Case of Windows

A common misunderstanding among Web developers is the

relationship between frames and windows. In reality, both from the

perspective of XHTML and JavaScript, each frame shown onscreen is

a window that can be manipulated. In fact, when a browser window

contains multiple frames, it is possible to access each of the separate

Windowobjects through window.frames[], which is an array of the

individual frames in the window. The basic properties useful for

manipulating frames are detailed in Table 12-8.

Table 12-8 Common WindowProperties Related to Frames

The major challenge using frames and JavaScript is to keep the names

and relationships between frames clear so that references between

frames are formed correctly. Consider you have a document called

“frames.html” with the following markup:

NOTE Notice that the DOCTYPE statement here is different:

HTML5 does not support traditional frames, just inline frames. Where

required, we use the HTML4 frameset DOCTYPE for clean

validation.

In this case, the window containing this document is considered the

parent of the three frames (frame1, frame2, and frame5). While you

might expect to use a value such as

you probably will actually run the script from within a child frame to

determine the number of frames in the window. Thus, you would

actually use

or just

The parent property allows a window to determine the parent window.

We could also use the top property that provides us a handle to the top

window that contains all others. This would be written

top.frames.length. You do need to be careful, though, because unless

you have nested frames, the parent and top may actually be one and

the same. In addition, it is possible to access the hosting Frame object

with the window. frameElement property.

NOTE Firefox also offers the content property. This returns the

topmost window. As it is only supported in Firefox, top is the

recommended property.

To access a particular frame, we can use both its name as well as its

position in the array, so the following would print out the name of the

first frame, which in our case is “frame1”:

We could also access the frame from another child frame using

parent.frame1, or even parent.frames[“frame1”], using the associate

array aspect of an object collection. Remember that a frame contains a

window, so once you have this you can then use all of the Window

andDocument methods on what the frame contains.

The next example shows the idea of frame names and the way they

are related to each other. There are three files that are required for this

example—two framesets (frames.html and moreframes.html) and a

document (framerelationship.html) that contains a script that prints

out the self, parent, and top relationships of frames.

The first frameset file, frames.html, is listed here:

The second frameset file, moreframes.html, is listed here:

The document, framerelationship.html, is listed here:

ONLINE http://javascriptref.com/3ed/ch12/frames.html

The relationships using these example files are shown in Figure 12-5.

Figure 12-5 Frame relationships

Once you understand the relationships between frames, you will find

it much easier to assign variables to particular frames within deeper

pages rather than using the parent.frames[] array all the time. For

example, given a simple frameset such as this:

you might set a variable to reference the content frame within the

navigation Window, like so:

This way, you could just reference things by contentFrame rather than

the long array path.

Inline Frames

One variation of frames that deserves special attention is

the <iframe>, or inline frame, because it is preserved under HTML5.

The idea with an inline frame is that you can add a frame directly into

a document without using a frameset. For example, this example

produces a page something like this:

ONLINE http://javascriptref.com/3ed/ch12/iframe.html

This then begs the question, “How do we control this type of frame?”

In reality, it is much easier since it is within the frames[] array of the

current window. Furthermore, if named, you can use DOM methods

such as getElementById() to access the object. The simple example

here demonstrates this idea:

While inline frames seem to be a simplification of standard frames,

they are far more interesting than these examples suggest. In fact,

we’ll see in Chapter 15 that <iframe> tags serve as a non-Ajax

method for JavaScript to communicate with a Web server. For now,

though, we put off this advanced application and study some more

common JavaScript frame applications.

Applied Frames

Now that we are familiar with frame naming conventions, it is time to

do something with them. In this section, we present some solutions

for common frame problems and hint at the larger issues with frame

usage.

Loading Frames

A common question developers have with HTML is how to load

multiple frames with a link. XHTML provides the target attribute to

target a single frame, such as framename, like so:

However, how would you target two or more frames with a single link

click? The answer, of course, is by using JavaScript. Consider the

frameset here:

In this case, we want a link in the navigation.html file to load two

windows at once. We could write a simple set of JavaScript

statements to do this, like so:

This approach can get somewhat unwieldy, so you might instead want

to write a function called loadFrames() to do the work. You might

even consider using a generic function that takes two arrays—one

with frames and one with URL targets—and loads each one by one, as

demonstrated here:

Frame Busting

While frames can be very useful for building some complex user

interfaces and comparing documents, they also can cause Web

designers significant problems. For example, some sites will put

frames around all outbound links and “capture” the browsing session.

Often, site designers will employ a technique called “frame busting”

to destroy any enclosing frameset their page may be enclosed within.

This is very easy using the following script that sets the topmost

frame’s current location to the value of the page that should not be

framed:

Frame Building

The converse problem to the one solved by frame busting would be to

avoid having framed windows displayed outside of their framing

context. This occasionally happens when users bookmark a piece of a

frameset or launch a link from a frameset into a new window. The

basic idea would be to have all framed documents make sure they are

inside of frames by looking at each window’s location object, and if

they are not, to dynamically rebuild the frameset document. For

example, given a simple two-frame layout such as in a file called

frameset.html:

You might be worried that a user could bookmark or directly enter the

navigation.html or content.html URL. To rebuild the frameset in

navigation.html and content.html, you might have

which would detect if the page was outside its frameset and rebuild it.

Of course, this is a very simplistic example, but it gives the basic idea

of frame building. The script can be expanded and a variety of tricks

employed to preserve the state of the navigation and content pages.

All the efforts made in the last few sections reveal that frames really

do have their downsides. While they may provide for stable user

interfaces, they are not terribly bookmarking friendly, more than

occasionally have printing problems, and not well handled by search

engines. As we demonstrated, you can certainly use JavaScript to

solve the problems with frames, but it might be better simply to avoid

using them in many cases. Before concluding our discussion of

frames, let’s take a final look at interwindow communication for state

management using frames and JavaScript.

State Management with Frames

One aspect of frames that some developers found useful early on with

JavaScript was the ability to save variable state across multiple page

views. As we saw with windows previously, it is possible to access

the variable space of one window from another Window, and the

same holds for frames. Using a special type of frameset where a small

frame that is hard for a user to notice is used, we can create a space to

hold variables across page loads. Consider for example, the frameset

in the file stateframes.html shown here:

In this case, we have a very small frame called stateframe that will be

used to save variables across page loads. The contents of

stateframe.html, mainframe.html, and mainframe2.html are shown

here. Notice how, by referencing the parent frame, we are able to

access the hidden frame’s variable username on any page.

The stateframe.html file is shown here:

The mainframe.html file is shown here:

The mainframe2.html file is shown here:

ONLINE http://javascriptref.com/3ed/ch12/stateframes.html

Obviously, as compared to pushstate() methods and other more

modern features, the use of simple interwindow communications with

frames to maintain state is a bit primitive. However, we’ll see that in

nearly any case, the security implications of all of these client-side

state preservation mechanisms leaves a bit to be desired. Given the

hostile nature of the Internet, programmers are strongly encouraged to

rely on traditional state management mechanisms such as cookies to

maintain state between pages in a site. More information on state

management can be found in Chapter 16.

PhP programs

1) Fibonacci Series
Fibonacci series is the one in which you will get your next term by adding previous
two numbers.

For example,

1. 0 1 1 2 3 5 8 13 21 34
2. Here, 0 + 1 = 1
3. 1 + 1 = 2
4. 3 + 2 = 5

and so on.

Logic:

o Initializing first and second number as 0 and 1.

o Print first and second number.

o From next number, start your loop. So third number will be the sum of the first
two numbers.

Example:

18.4M
384

Java Try Catch

We'll show an example to print the first 12 numbers of a Fibonacci series.

1. <?php
2. $num = 0;
3. $n1 = 0;

4. $n2 = 1;
5. echo "<h3>Fibonacci series for first 12 numbers: </h3>";
6. echo "\n";
7. echo $n1.' '.$n2.' ';
8. while ($num < 10)
9. {
10. $n3 = $n2 + $n1;
11. echo $n3.' ';
12. $n1 = $n2;
13. $n2 = $n3;
14. $num = $num + 1;
15.?>

Output:

2) Leap Year Program
A leap year is the one which has 366 days in a year. A leap year comes after every
four years. Hence a leap year is always a multiple of four.

For example, 2016, 2020, 2024, etc are leap years.

Leap Year Program
This program states whether a year is leap year or not from the specified range of
years (1991 - 2016).

Example:

How to find Nth Highest Salary in SQL

1. <?php
2. function isLeap($year)
3. {
4. return (date('L', mktime(0, 0, 0, 1, 1, $year))==1);
5. }
6. //For testing
7. for($year=1991; $year<2016; $year++)
8. {
9. If (isLeap($year))
10. {
11. echo "$year : LEAP YEAR
\n";
12. }
13. else
14. {
15. echo "$year : Not leap year
\n";
16. }
17. }
18.?>

Output:

3) Factorial Program
The factorial of a number n is defined by the product of all the digits from 1 to n
(including 1 and n).

For example,

1. 4! = 4*3*2*1 = 24
2. 6! = 6*5*4*3*2*1 = 720

Note:

o It is denoted by n! and is calculated only for positive integers.

o Factorial of 0 is always 1.

The simplest way to find the factorial of a number is by using a loop.

8. Modules and PHP Abstract class | Build a CMS using OOP PHP CMS tutorial MVC [2020]

There are two ways to find factorial in PHP:

o Using loop

o Using recursive method

Logic:

o Take a number.

o Take the descending positive integers.

o Multiply them.

Factorial in PHP
Factorial of 4 using for loop is shown below.

Example:

1. <?php
2. $num = 4;
3. $factorial = 1;
4. for ($x=$num; $x>=1; $x--)
5. {
6. $factorial = $factorial * $x;
7. }
8. echo "Factorial of $num is $factorial";
9. ?>

Output:

4) Armstrong Number
An Armstrong number is the one whose value is equal to the sum of the cubes of its
digits.

0, 1, 153, 371, 407, 471, etc are Armstrong numbers.

For example,

1. 407 = (4*4*4) + (0*0*0) + (7*7*7)
2. = 64 + 0 + 343
3. 407 = 407

Logic:

Exception Handling in Java - Javatpoint

o Take the number.

o Store it in a variable.

o Take a variable for sum.

o Divide the number with 10 until quotient is 0.

o Cube the remainder.

o Compare sum variable and number variable.

Armstrong number in PHP
Below program checks whether 407 is Armstrong or not.

Example:

1. <?php
2. $num=407;
3. $total=0;

4. $x=$num;
5. while($x!=0)
6. {
7. $rem=$x%10;
8. $total=$total+$rem*$rem*$rem;
9. $x=$x/10;
10. }
11. if($num==$total)
12. {
13.echo "Yes it is an Armstrong number";
14. }
15.else
16. {
17.echo "No it is not an armstrong number";
18. }
19.?>

Output:

5) Palindrome Number
A palindrome number is a number which remains same when its digits are reversed.

For example, number 24142 is a palindrome number. On reversing it we?ll get the
same number.

Logic:

o Take a number.

o Reverse the input number.

o Compare the two numbers.

o If equal, it means number is palindrome

Palindrome Number in PHP
Example:

Exception Handling in Java - Javatpoint

1. <?php
2. function palindrome($n){
3. $number = $n;
4. $sum = 0;
5. while(floor($number)) {
6. $rem = $number % 10;
7. $sum = $sum * 10 + $rem;
8. $number = $number/10;
9. }
10.return $sum;
11. }
12.$input = 1235321;
13.$num = palindrome($input);
14. if($input==$num){
15.echo "$input is a Palindrome number";
16. } else {
17.echo "$input is not a Palindrome";
18. }
19.?>

Output:

User Interface Elements
When designing your interface, try to be consistent and predictable in your choice of interface

elements. Whether they are aware of it or not, users have become familiar with elements

acting in a certain way, so choosing to adopt those elements when appropriate will help with

task completion, efficiency, and satisfaction.

Interface elements include but are not limited to:

● Input Controls: checkboxes, radio buttons, dropdown lists, list boxes, buttons, toggles, text

fields, date field

● Navigational Components: breadcrumb, slider, search field, pagination, slider, tags, icons

● Informational Components: tooltips, icons, progress bar, notifications, message boxes,

modal windows

● Containers: accordion

Input Controls

Element Description Examples

Checkboxes Checkboxes

allow the user

to select one or

more options

from a set. It is

usually best to

present

checkboxes in a

vertical list.

More than one

column is

acceptable as

well if the list is

long enough

that it might

require

scrolling or if

comparison of

Element Description Examples

terms might be

necessary.

Radio

buttons

Radio buttons

are used to

allow users to

select one item

at a time.

Dropdown

lists

Dropdown lists

allow users to

select one item

at a time,

similarly to

radio buttons,

but are more

compact

allowing you to

save space.

Consider

adding text to

the field, such

as ‘Select one’

to help the

user recognize

the necessary

action.

Element Description Examples

List boxes List boxes, like

checkboxes,

allow users to

select a

multiple items

at a time,but

are more

compact and

can support a

longer list of

options if

needed.

Buttons A button

indicates an

action upon

touch and is

typically

labeled using

text, an icon, or

both.

Dropdown

Button

The dropdown

button consists

of a button

that when

clicked displays

a drop-down

list of mutually

exclusive

items.

Element Description Examples

Toggles A toggle button

allows the user

to change a

setting

between two

states. They

are most

effective when

the on/off

states are

visually

distinct.

Text fields Text fields

allow users to

enter text. It

can allow

either a single

line or multiple

lines of text.

Date and

time pickers

A date picker

allows users to

select a date

and/or

time. By using

the picker, the

information is

consistently

formatted and

input into the

system.

Navigational Components

Element Description Examples

Search Field A search box

allows users to

enter a keyword

or phrase (query)

and submit it to

search the index

with the intention

of getting back

the most relevant

results. Typically

search fields are

single-line text

boxes and are

often

accompanied by a

search button.

Breadcrumb Breadcrumbs

allow users to

identify their

current location

within the system

by providing a

clickable trail of

proceeding pages

to navigate by.

Element Description Examples

Pagination Pagination divides

content up

between pages,

and allows users

to skip between

pages or go in

order through the

content.

Tags Tags allow users

to find content in

the same

category. Some

tagging systems

also allow users to

apply their own

tags to content by

entering them

into the system.

Element Description Examples

Sliders A slider, also

known as a track

bar, allows users

to set or adjust a

value. When the

user changes the

value, it does not

change the format

of the interface or

other info on the

screen.

Icons An icon is a

simplified image

serving as an

intuitive symbol

that is used to

help users to

navigate the

system. Typically,

icons are

hyperlinked.

Image

Carousel

Image carousels

allow users to

browse through a

set of items and

make a selection

of one if they so

choose. Typically,

the images are

hyperlinked.

Information Components

Element Description Examples

Notifications A

notification

is an update

message

that

announces

something

new for the

user to see.

Notifications

are typically

used to

indicate

items such

as, the

successful

completion

of a task, or

an error or

warning

message.

Progress

Bars

A progress

bar

indicates

where a

user is as

they

advance

through a

series of

steps in a

process.

Element Description Examples

Typically,

progress

bars are not

clickable.

Tool Tips A tooltip

allows a

user to see

hints when

they hover

over an item

indicating

the name or

purpose of

the item.

Message

Boxes

A message

box is a

small

window that

provides

information

to users and

requires

them to

take an

action

before they

can move

forward.

Element Description Examples

Modal

Window

(pop-up)

A modal

window

requires

users to

interact with

it in some

way before

they can

return to

the system.

Containers

Element Description Examples

Accordion An accordion is a vertically stacked list of items

that utilizes show/ hide functionality. When a label

is clicked, it expands the section showing the

content within. There can have one or more items

showing at a time and may have default states

that reveal one or more sections without the user

clicking

Web Application Security

Web application security refers to a variety of processes, technologies, or methods for

protecting web servers, web applications, and web services such as APIs from attack

by Internet-based threats. Web application security is crucial to protecting data,

customers, and organizations from data theft, interruptions in business continuity, or

other harmful results of cybercrime.

What Is Web Application Security?

By most estimates, more than three-quarters of all cybercrime targets applications and

their vulnerabilities. Web application security products and policies strive to protect

applications through measures such as web application firewalls (WAFs), multi-factor

authentication (MFA) for users, the use, protection, and validation of cookies to

maintain user state and privacy status, and various methods for validating user input

to ensure it is not malicious before that input is processed by an application.

Why Is Web Application Security Important?

The world today runs on apps, from online banking and remote work apps to personal

entertainment delivery and e-commerce. It’s no wonder that applications are a primary

target for attackers, who exploit vulnerabilities such as design flaws as well as

weaknesses in APIs, open-source code, third-party widgets, and access control.

Common attacks against web applications include:

• Brute force

• Credential stuffing

• SQL injection and formjacking injections

• Cross-site scripting

• Cookie poisoning

• Man-in-the-middle (MITM) and man-in-the-browser attacks

• Sensitive data disclosure

• Insecure deserialization

• Session hijacking

One recent study1 estimated that cybercrime will cost $5.2 trillion in lost value across

all industries by 2024. Another estimated the losses will reach $6 trillion annually

before then2. Security devices and technologies are crucial for limiting, if not

eliminating, such costs. In addition to direct financial and data theft, web application

threats can destroy assets, customer goodwill, and business reputations. That makes

web application security imperative for organizations of all sizes.

https://www.f5.com/services/resources/glossary/sql-injection
https://www.f5.com/services/resources/glossary/cross-site-scripting
https://www.f5.com/services/resources/glossary/cookie-poisoning
https://www.f5.com/services/resources/glossary/web-application-security#footnote1
https://www.f5.com/services/resources/glossary/web-application-security#footnote2

How Does Web Application Security Work?

Different approaches to web application security address different vulnerabilities. Web

application firewalls (WAFs), among the more comprehensive, defend against many

types of attack by monitoring and filtering traffic between the web application and any

user. Configured with policies that help determine what traffic is safe and what isn’t, a

WAF can block malicious traffic, preventing it from reaching the web application and

preventing the app from releasing any unauthorized data.

Other web application security methods focus on user authentication and access

management, app vulnerability scanners, cookie management, traffic visibility, and IP

denylists, for instance..

Common web app vulnerabilities

the top 10 most common application vulnerabilities include:

• Injection.  An injection happens when a bad actor sends invalid data to

the web app to make it operate differently from the intended purpose of

the application.

• Broken Authentication.  A broken authentication vulnerability allows a

bad actor to gain control over an account within a system or the entire

system.

• Sensitive Data Exposure. Sensitive data exposure means data is

vulnerable to being exploited by a bad actor when it should have been

protected.

• XML External Entities (XXE). A type of attack against an application that

parses XML input and occurs when XML input containing a reference to

an external entity is processed by a weakly configured XML parser.

• Broken Access Control. When components of a web application are

accessible instead of being protected like they should be, leaving them

vulnerable to data breaches.

• Security Misconfigurations. Incorrectly misconfiguring a web application

provides bad actors with an easy way in to exploit sensitive information.

• Cross Site Scripting (XSS). An XSS attack means a bad actor injects

malicious client-side scripts into a web application.

https://www.f5.com/services/resources/glossary/web-application-firewall
https://www.f5.com/services/resources/glossary/web-application-firewall

• Insecure Deserialization. Bad actors will exploit anything that interacts

with a web application—from URLs to serialized objects—to gain access.

• Using Components with Known Vulnerabilities. Instances such as missed

software and update change logs can serve as big tip-offs for bad actors

looking for ins into a web application. Disregarding updates can allow a

known vulnerability to survive within a system.

• Insufficient Logging and Monitoring. Lack of efficient logging and

monitoring processes increases the chances of a web app being

compromised

XP

Tutorial 13

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

1

Working with Windows and Frames

Enhancing a Web Site with Interactive

Windows

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

2

Objectives

• Learn about the properties of the window

object

• Create permanent and transient status bar

messages

• Work with the properties of the location and

history objects

• Apply automatic page navigation to a Web

site

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

3

Objectives

• Use JavaScript to create a pop-up window

• Learn how to adjust your code to

accommodate pop-up blockers

• Work with the properties and methods of pop-

up windows

• Create alert, confirm, and prompt dialog

boxes

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

4

Objectives

• Understand how to write content directly into

a pop-up window

• Study how to work with modal and modeless

windows

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

5

Objectives

• Work with frame and frameset objects

• Study how to navigate between frames

• Learn how to change the content of a frame

• Study how to change a frame layout

• Block frames and force pages into framesets

• Learn how to work with inline frames

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

6

Working with the Window Object

• JavaScript considers the browser window an

object, which it calls the window object

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

7

Working with the Window Object

• To set a property of the window object

windowObject.property = “value”

• In some cases, can leave the window object

reference out

window.innerHeight = “300”;

• If the property is an object, you can drop the

reference to the window

 location = “href”

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

8

Working with Status Bars

• The borders of a browser window, including

items such as the toolbars and scrollbars, are

collectively referred to as the window’s

chrome

• Common to all browsers is the status bar

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

9

Working with Status Bars

• Setting the Default Status Bar Message

– The permanent status bar message is the

message that appears in the status bar by default

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

10

Working with Status Bars

• Creating a transient status bar message

– A transient status bar message appears only

temporarily in response to an event occurring

within the browser
windowObject.status=“text”;

return true;

– Transient status bar messages remain until some

other event replaces them

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

11

Working with Status Bars

• Creating a transient status bar message

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

12

Working with the History and

Location Objects

• The location object contains information

about the page that is currently displayed in

the window

• The history object holds a list of the sites the

Web browser has displayed before reaching

the current page in the window

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

13

Working with the History and

Location Objects

• Moving Forward and Backward in the History

List
history.back();

history.forward();

windowObject.history.back();

– To go to a particular page in the history
history.go(integer);

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

14

Working with the History and

Location Objects

• Automatic Page Navigation

– Two ways to redirect the user

– One way is to add a command to the <meta> tag

– The other is to create a JavaScript program that

runs when the page is loaded and opens the new

page automatically
<meta http-equiv =”Refresh” content=“sec”;URL=“url”

/>

windowObject.location.href = “url”;

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

15

Working with the History and

Location Objects

• Automatic Page Navigation

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

16

Working with the History and

Location Objects

• Security Issues

– Netscape (version 4.0 and above) uses signed

scripts to request permission to access restricted

information

– Signed scripts are not available in Internet

Explorer and prior to Netscape version 4, these

properties were not available at all from a script

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

17

Creating New Browser Windows

• Windows that open in addition to the main

browser window are called secondary

windows or pop-up windows

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

18

Creating New Browser Windows

• Opening New Windows with HTML

– If you want one of your links to open the target

document in a new window, you specify the

window name using the target property

link

text

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

19

Creating New Browser Windows

• Opening New Windows with JavaScript

– The JavaScript command to create a new browser

window is

window.open(“url”,”name”,”features”)

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

20

Creating New Browser Windows

• Setting the Features of a Pop-up Window

– The feature list obeys the following syntax:
“feature1=value1, feature2=value2…featureN=valueN”

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

21

Creating New Browser Windows

• Setting the Features of a Pop-up Window

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

22

Creating New Browser Windows

• Working with Pop-up Blockers

– Pop-up blockers prevent pop-up windows from

opening

– You can have the browser check whether the pop-

up window has been opened or not

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

23

Creating New Browser Windows

• Working with Pop-up Blockers
 function popWin(url) {

 windowObj = window.open(“url”,”name”,”features”);

 test=(windowObj==null ||

 typeof(windowObj)==“undefined) ? true : false;

 return test;

}

Link

Text

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

24

Creating New Browser Windows

• Adding a Pop-up Window to the iMusicHistory

Site

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

25

Creating New Browser Windows

• Window Security Issues

– A browser’s ability to open new windows on a

user’s computer raises some security issues

– For example, you cannot create a new window

with a width and height less than 100 pixels

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

26

Working with Window Methods

• Window Methods

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

27

Working with Window Methods

• The Self and Opener Keywords

– The self keyword refers to the current window

– Self keyword is synonymous with the window

keyword, but you may see it used to improve

clarity

– The opener keyword refers to the window or

frame that used the window.open() method to

open the current window

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

28

Creating Dialog Boxes

• An alert dialog box displays a message

along with an OK button

• A prompt dialog box displays both a

message and a text box in which the user can

enter text

• A confirm dialog box displays a message

along with OK and cancel buttons

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

29

Creating Dialog Boxes

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

30

Creating Dialog Boxes

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

31

Working between Windows

• Writing Content to a Window

– To write content to a pop-up-window, you use the

document.write() method

windowObject.document.write(“Content”);

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

32

Working between Windows

• Accessing an Object within a Window

– Once you specify a window object, you can work

with the objects contained in the window’s

document
windowObject.document.getElementById(id);

windowObject.variable

windowObject.function()

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

33

Working with Modal and Modeless

Windows

• A modal window is a window that prevents

users from doing work in any other window or

dialog box until the window is closed

• A modeless window allows users to work in

other dialog boxes and windows even if the

window stays open
windowObject.showModalDialog(“url”, “arguments”,

“features”)

windowObject.showModelessDialog(“url”,

“arguments”, “features”)

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

34

Working with Modal and Modeless

Windows

• Working with the Features List

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

35

Working with Modal and Modeless

Windows

• Exchanging Information between the

Windows

– Neither the showModalDialog() nor the

showModelessDialog() methods allow direct

interaction between the calling browser window

and the pop-up window

– If you need to send information, you must include

that data in the arguments parameter for the

method

XP

Tutorial 13 36

Working with Frames

• The name attribute of a frame is used when

creating links whose targets are designed to

appear in specific frames

• To reference a specific frame in you

JavaScript code, you need to use the id

attribute
 <frame id=“top” name=“top” src=“home.htm” />

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

37

Working with Frames

• Working with the frame and frameset objects

– Each frame in a frameset is part of the frames

collection

 windowObject.frames[idref]

– To reference the header frame

 window.frames[0]

 window.framses[“header”]

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

38

Working with Frames

• Navigating between frames

– JavaScript treats the frames in a frameset as

elements in a hierarchical tree

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

39

Working with Frames

• Navigating between frames

– The parent keyword refers to any object that is

placed immediately above another object in the

hierarchy

– If you want to go directly to the top of the

hierarchy, you can use the top keyword

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

40

Working with Frames

• Treating frames as windows

– In most cases JavaScript treats a frame as a

separate browser window
frameObject.document.write(content)

frameObject.document.close()

frameObject.location.href = “url”

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

41

Working with Frames

• Setting the frameset layout

– In JavaScript
frameset.rows = “text”

frameset.cols = “text”

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

42

Working with Frames

• Collapsing and expanding a frame

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

43

Working with Frames

• Collapsing and expanding a frame

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

44

Working with Inline Frames

• Another way to use frames in a Web site is by

incorporating an inline frame
<iframe src=“url” id=“text” name=“text”

width=“value” height=“value”>alternate

content</iframe>

• You can reference it from the current

document window using the object reference

or as a frame using the frames reference

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

45

Tips for Working with Windows

and Frames

• If you use JavaScript to write a transient

status bar message, be sure to properly

erase the message

• Keep the use of pop-up windows to minimum,

and forewarn your users if possible

• Include code to verify that a pop-up window

has not been blocked and, if possible, provide

alternate methods

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

46

Tips for working with windows and

frames

• Include code that makes it easy for users to

close your pop-up windows

• Allow your users to resize your pop-up

windows

• If the existence of pop-up blockers poses a

problem, consider using alert, prompt, and

confirm dialog boxes in place of pop-up

windows

XP

Tutorial 13 New Perspectives on HTML, XHTML,

and DHTML, Comprehensive

47

Tips for working with windows and

frames

• If frames are a concern, add conditional

statements to your documents to prevent

them from appearing within the framesets of

other Web sites

• Add JavaScript code to your frame

documents so that they always appear within

the context of their framesets

WINDOWS,FRAMES AND
OVERLAYS

WINDOWS

• JavaScript’s Window object represents the browser window, or
potentially frame, that a document is displayed in.

• The properties of a particular instance of Window might include its
size, amount of chrome—namely the buttons, scroll bars, and so on—
in the browser frame, position, and so on.

• The methods of the Window include the creation and destruction of
generic windows and the handling of special-case windows such as
alert, confirmation, and prompt dialogs.

window Properties and Objects

window Methods

Dialogs

• To create three types of special windows known generically as
dialogs.

• A dialog box, or simply dialog, is a small window in a graphical user
interface that “pop ups,” requesting some action from a user.

• The three types of basic dialogs supported directly by JavaScript
include alerts, confirms, and prompts.

alert()

• The Window object’s alert() method creates a special small window
with a short string message and an OK button, as shown here:

•

or, for shorthand, we just use

The basic syntax for alert is

confirm()

• The confirm() method creates a window that displays a message for a
user to respond to by pressing either an OK button to agree with the
message or a Cancel button to disagree with the message.

• A typical rendering is shown here:

• The basic syntax of the confirm() method is

or simply,

prompt()

• A prompt window invoked by the prompt() method of the Window
object is a small data collection dialog that prompts the user to enter
a short line of data, as shown here:

The prompt() method takes two arguments. The basic syntax is shown here:

• The first parameter is a string that displays the prompt value, and the second is a default value to put
in the prompt window.

• The method returns a string value that contains the value entered by the user in the prompt.

• However, in many browsers you may see that a value of undefined is
placed in the prompt line.

• You should set the second parameter to an empty string to keep this
from happening:

The shorthand prompt() is almost always used instead of window.prompt(), and occasionally
programmers will accidentally use only a single value in the method:

• When using the prompt() method, it is important to understand what is returned. If the user
presses the Cancel button in the dialog or the close box, a value of null will be returned. It is
always a good idea to check for this.

• Otherwise, a string value will be returned.
• Programmers should be careful to convert prompt values to the appropriate type using

parseInt(), parseFloat(), or another type conversion scheme if they do not want a string value.

Opening and Closing Generic Windows

• While the alert(), confirm(), and prompt() methods create specialized
windows quickly, it is often desirable to open arbitrary windows to
show a Web page or the result of some calculation.

• The Window object methods open() and close() are used to create
and destroy a Window, respectively.

• When you open a Window, you can set its URL, name, size, buttons,
and other attributes, such as whether or not the window can be
resized.

• The basic syntax of this method is

• URL is a URL that indicates the document to load into the window.

• name is the name for the window (which is useful for referencing it
later on using the target attribute of HTML links).

• features is a comma-delimited string that lists the features of the
window.

• replace is an optional Boolean value (true or false) that indicates
whether or not the URL specified should replace the window’s
contents. This would apply to a window that was already created.

• A simple example of this method is

• This would open a window to Google with a height of 300 pixels, a
width of 600 pixels, and scroll bars, as shown here:

• Once a window is open, the close() method can be used to close
it.

Frames: A Special Case of Windows

• When a browser window contains multiple frames, it is possible to
access each of the separate Window objects through
window.frames[], which is an array of the individual frames in the
window.

• The basic properties useful for manipulating frames are,

• The major challenge using frames and JavaScript is to keep the names
and relationships between frames clear so that references between
frames are formed correctly.

In this case, the window containing this document is considered the parent of the three frames (frame1,
frame2, and frame5). While you might expect to use a value such as

you probably will actually run the script from within a child frame to determine the number of frames
in the window. Thus, you would actually use

or just

• The parent property allows a window to determine the parent
window.

• To access a particular frame, we can use both its name as well as its
position in the array, so the following would print out the name of
the first frame, which in our case is “frame1”:

• We could also access the frame from another child frame using
parent.frame1, or even parent.frames[“frame1”], using the
associate array aspect of an object collection.

• Remember that a frame contains a window, so once you have this
you can then use all of the Window and Document methods on
what the frame contains.

Inline Frames

• One variation of frames that deserves special attention is
the <iframe>, or inline frame, because it is preserved under HTML5.
The idea with an inline frame is that you can add a frame directly into
a document without using a frameset. For example, this example

•

produces a page something like this:

• Applied Frames

• Now that we are familiar with frame naming conventions, it is time to
do something with them. In this section, we present some solutions
for common frame problems and hint at the larger issues with frame
usage.

• Loading Frames

• A common question developers have with HTML is how to load
multiple frames with a link. XHTML provides the target attribute to
target a single frame, such as framename, like so:

Frame Busting

• While frames can be very useful for building some complex user interfaces and comparing
documents, they also can cause Web designers significant problems.

Frame Building

• The converse problem to the one solved by frame busting would be
to avoid having framed windows displayed outside of their framing
context. This occasionally happens when users bookmark a piece of a
frameset or launch a link from a frameset into a new window. The
basic idea would be to have all framed documents make sure they
are inside of frames by looking at each window’s location object, and
if they are not, to dynamically rebuild the frameset document.

Overlays Instead of Windows

• Simple dialogs such as alert() and prompt() lack customization.

• You may opt to try to create custom dialogs using the generic
window.open() method.

• However, in either case, the dialogs may be blocked by browser-
based or third-party pop-up blockers installed by the user.

• To address both the customization concerns and pop-up blockers,
many designers have turned to what we dub “div dialogs,” named for
the HTML <div> tag used to create them.

• Using CSS, designers can position <div> tag–based regions over
content and customize them visually in whatever manner they like.

